cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293732 Number of multisets of nonempty words with a total of n letters over binary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 1, 3, 6, 15, 31, 73, 155, 351, 755, 1673, 3604, 7897, 16988, 36902, 79222, 171030, 366180, 786746, 1679976, 3595207, 7657631, 16332935, 34706319, 73812099, 156503351, 332004423, 702533059, 1486998780, 3140716766, 6634315264, 13988517803, 29494816751
Offset: 0

Views

Author

Alois P. Heinz, Oct 15 2017

Keywords

Crossrefs

Column k=2 of A293108.
Cf. A001405.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add(binomial(d,
          floor(d/2))*d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);
  • Mathematica
    nmax = 40; A001405 = Table[Binomial[n, Floor[n/2]], {n, 1, nmax}]; CoefficientList[Series[Product[1/(1 - x^k)^A001405[[k]], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 30 2019 *)

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A001405(j).
a(n) ~ 2^(n - 1/6) * exp(3*(n/2)^(1/3) - 2 + S) / (sqrt(3*Pi) * n^(5/6)), where S = Sum_{k>=2} (sqrt(1/(1 - 1/2^(2*k - 2))) - 1) * (2^k + 2) / (2*k) = 0.3158684977247920135402311766405977266170498097655... - Vaclav Kotesovec, May 30 2019