cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293734 Number of multisets of nonempty words with a total of n letters over quaternary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 1, 3, 7, 20, 53, 157, 455, 1393, 4270, 13495, 42907, 139323, 455182, 1510831, 5042858, 17044789, 57891598, 198665585, 684615958, 2379765470, 8302157207, 29177909254, 102867895209, 364981305292, 1298526198294, 4645569147108, 16659856695779, 60036951331540
Offset: 0

Views

Author

Alois P. Heinz, Oct 15 2017

Keywords

Crossrefs

Column k=4 of A293108.
Cf. A005817.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1, (4*(2*n+3)*
           g(n-1)+16*(n-1)*n*g(n-2))/((n+3)*(n+4)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d)
          *d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);
  • Mathematica
    g[n_] := g[n] = If[n<2, 1, (4*(2*n+3)*g[n-1] + 16*(n-1)*n*g[n-2])/((n+3)* (n+4))];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[g[d]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 30 2019, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors
    @cacheit
    def g(n): return 1 if n<2 else (4*(2*n + 3)*g(n - 1) + 16*(n - 1)*n*g(n - 2))//((n + 3)*(n + 4))
    @cacheit
    def a(n): return 1 if n==0 else sum(sum(g(d)*d for d in divisors(j))*a(n - j) for j in range(1, n + 1))//n
    print([a(n) for n in range(36)]) # Indranil Ghosh, Oct 15 2017

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A005817(j).
a(n) ~ c * 4^n / n^3, where c = 19.002514794... - Vaclav Kotesovec, May 30 2019