cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293735 Number of multisets of nonempty words with a total of n letters over quinary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 1, 3, 7, 20, 54, 163, 492, 1571, 5122, 17262, 59483, 209958, 755615, 2770994, 10330036, 39103166, 150073289, 583329574, 2293822828, 9116935874, 36593731182, 148221246775, 605427601519, 2492286544749, 10334197803358, 43140208034891, 181224681022614
Offset: 0

Views

Author

Alois P. Heinz, Oct 15 2017

Keywords

Comments

This sequence differs from A293110 first at n=6.

Crossrefs

Column k=5 of A293108.

Programs

  • Maple
    g:= proc(n) option remember;
          `if`(n<3, [1, 1, 2][n+1], ((3*n^2+17*n+15)*g(n-1)
           +(n-1)*(13*n+9)*g(n-2) -15*(n-1)*(n-2)*g(n-3)) /
           ((n+4)*(n+6)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d)
          *d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);
  • Mathematica
    g[n_] := g[n] = If[n < 3, {1, 1, 2}[[n+1]], ((3n^2+17n+15) g[n-1] + (n-1)(13n+9) g[n-2] - 15(n-1)(n-2) g[n-3]) / ((n+4)(n+6))];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[g[d] d, {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
    a /@ Range[0, 35] (* Jean-François Alcover, Dec 19 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A049401(j).
a(n) ~ c * 5^n / n^5, where c = 542.824729617782144... - Vaclav Kotesovec, May 30 2019