A293738 Number of multisets of nonempty words with a total of n letters over octonary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 1, 3, 7, 20, 54, 164, 500, 1630, 5471, 19246, 70020, 264961, 1035540, 4187725, 17440159, 74817905, 329400093, 1487844185, 6873585346, 32460719143, 156315314070, 767106102127, 3828629444020, 19423438144438, 99998608025751, 522200287437179, 2762351298913471
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:= proc(n) option remember; `if`(n<4, [1, 1, 2, 4][n+1], ((40*n^3+1084*n^2+8684*n+18480)*g(n-1) +16*(n-1)* (5*n^3+107*n^2+610*n+600)*g(n-2) -1024*(n-1)*(n-2)* (n+6)*g(n-3) -1024*(n-1)*(n-2)*(n-3)*(n+4)*g(n-4)) /((n+7)*(n+12)*(n+15)*(n+16))) end: a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d) *d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..35);
Formula
G.f.: Product_{j>=1} 1/(1-x^j)^A007580(j).
a(n) ~ c * 8^n / n^14, where c = 4485962145436.6348123684794... - Vaclav Kotesovec, Dec 19 2020
Comments