cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A293112 Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 5, 2, 0, 1, 1, 2, 6, 10, 3, 0, 1, 1, 2, 6, 14, 23, 4, 0, 1, 1, 2, 6, 15, 39, 51, 5, 0, 1, 1, 2, 6, 15, 44, 104, 111, 6, 0, 1, 1, 2, 6, 15, 45, 129, 284, 243, 8, 0, 1, 1, 2, 6, 15, 45, 135, 386, 775, 530, 10, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 30 2017

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,   1,   1,   1,   1,   1,   1, ...
  0, 1,   1,   1,   1,   1,   1,   1, ...
  0, 1,   2,   2,   2,   2,   2,   2, ...
  0, 2,   5,   6,   6,   6,   6,   6, ...
  0, 2,  10,  14,  15,  15,  15,  15, ...
  0, 3,  23,  39,  44,  45,  45,  45, ...
  0, 4,  51, 104, 129, 135, 136, 136, ...
  0, 5, 111, 284, 386, 422, 429, 430, ...
		

Crossrefs

Main diagonal gives A293114.

Programs

  • Maple
    h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(l[k]
        n, 0, g(n-i, i, [l[], i])))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(g(i, k, []), j), j=0..n/i)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    h[l_] := Function[n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[ l[[k]] n, 0, g[n - i, i, Append[l, i]]]]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*Binomial[g[i, k, {}], j], {j, 0, n/i}]]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 03 2018, from Maple *)

Formula

G.f. of column k: Product_{j>=1} (1+x^j)^A182172(j,k).
A(n,k) = Sum_{j=0..k} A293113(n,j).

A293736 Number of multisets of nonempty words with a total of n letters over senary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 1, 3, 7, 20, 54, 164, 499, 1621, 5397, 18762, 67000, 247439, 936167, 3639968, 14450634, 58677742, 242511781, 1021307520, 4365923278, 18960435664, 83395216882, 371734296357, 1675125941350, 7635063496721, 35127842511275, 163213032700613, 764541230737345
Offset: 0

Views

Author

Alois P. Heinz, Oct 15 2017

Keywords

Comments

This sequence differs from A293110 first at n=7.

Crossrefs

Column k=6 of A293108.

Programs

  • Maple
    g:= proc(n) option remember;
          `if`(n<4, [1, 1, 2, 4][n+1], ((20*n^2+184*n+336)*g(n-1)
           +4*(n-1)*(10*n^2+58*n+33)*g(n-2) -144*(n-1)*(n-2)*g(n-3)
           -144*(n-1)*(n-2)*(n-3)*g(n-4))/ ((n+5)*(n+8)*(n+9)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d)
          *d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A007579(j).
a(n) ~ c * 6^n / n^(15/2), where c = 121210.8807171702661881473876689430182129891246619701141888082152779... - Vaclav Kotesovec, May 30 2019

A293887 Number of sets of nonempty words with a total of n letters over senary alphabet containing the sixth letter such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 7, 49, 268, 1448, 7228, 35878, 172470, 828380, 3924415, 18627313, 87940196, 416581962, 1971018227, 9364427840, 44535275966, 212749669917, 1018545160923, 4898593478484, 23625691956720, 114460931725922, 556278543737430, 2715406810871312, 13298453769286699
Offset: 6

Views

Author

Alois P. Heinz, Oct 18 2017

Keywords

Crossrefs

Column k=6 of A293113.

Formula

a(n) = A293745(n) - A293744(n).

A293888 Number of sets of nonempty words with a total of n letters over septenary alphabet containing the seventh letter such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 8, 64, 394, 2390, 13297, 73408, 391136, 2079440, 10889818, 57092581, 297655901, 1556501986, 8132631687, 42662224461, 224171916523, 1183189769473, 6263511343367, 33311244068612, 177803544643092, 953453596829798, 5132942333604244, 27758886429083153
Offset: 7

Views

Author

Alois P. Heinz, Oct 18 2017

Keywords

Crossrefs

Column k=7 of A293113.

Formula

a(n) = A293746(n) - A293745(n).
Showing 1-4 of 4 results.