cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293746 Number of sets of nonempty words with a total of n letters over septenary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 1, 2, 6, 15, 45, 136, 430, 1414, 4835, 17143, 62843, 238245, 930418, 3741710, 15445815, 65384356, 283113205, 1252393193, 5648731817, 25945636702, 121172059749, 574764521186, 2765620022767, 13486540312370, 66587056756662, 332594340605540, 1679325348600290
Offset: 0

Views

Author

Alois P. Heinz, Oct 15 2017

Keywords

Crossrefs

Column k=7 of A293112.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<4, [1, 1, 2, 4][n+1],
          ((4*n^3+78*n^2+424*n+495)*g(n-1) +(n-1)*(34*n^2+280*n+
           305)*g(n-2) -2*(n-1)*(n-2)*(38*n+145)*g(n-3) -105*(n-1)
           *(n-2)*(n-3)*g(n-4))/((n+6)*(n+10)*(n+12)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(g(i), j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);
  • Mathematica
    h[l_] := Function[n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[ l[[k]] < j, 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]][ Length[l]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Table[1, n]]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*Binomial[g[i, k, {}], j], {j, 0, n/i}]]];
    a[n_] := b[n, n, 7];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 06 2018, using code from A293112 *)

Formula

G.f.: Product_{j>=1} (1+x^j)^A007578(j).