A293785 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j>=1} j^(k-1)*x^j).
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 5, 13, 24, 1, 1, 9, 31, 73, 120, 1, 1, 17, 79, 241, 501, 720, 1, 1, 33, 211, 841, 2261, 4051, 5040, 1, 1, 65, 583, 3049, 10821, 24781, 37633, 40320, 1, 1, 129, 1651, 11353, 54221, 162601, 309835, 394353, 362880, 1, 1, 257
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 2, 3, 5, 9, 17, ... 6, 13, 31, 79, 211, ... 24, 73, 241, 841, 3049, ... 120, 501, 2261, 10821, 54221, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j^k*A(n-j,k)/(n-j)! for n > 0.