A293796 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} j^(k-1)*A000041(j)*x^j).
1, 1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 9, 31, 79, 1, 1, 17, 79, 265, 579, 1, 1, 33, 211, 937, 2621, 5209, 1, 1, 65, 583, 3433, 12501, 31621, 53347, 1, 1, 129, 1651, 12889, 62141, 204361, 426595, 628257, 1, 1, 257, 4759, 49225, 319461, 1395121, 3703099
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 3, 5, 9, 17, 33, ... 13, 31, 79, 211, 583, ... 79, 265, 937, 3433, 12889, ... 579, 2621, 12501, 62141, 319461, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Formula
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j^k*A000041(j)*A(n-j,k)/(n-j)! for n > 0.