A293809 Number of multisets of exactly n nonempty words with a total of 2n letters over 2n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 22, 73, 240, 818, 2824, 10004, 36252, 134594, 512632, 2002797, 8037634, 33122211, 140287074, 610344666, 2728599114, 12524559427, 59014996342, 285169596358, 1412357461074, 7161541766341, 37150562120334, 196945057245451, 1066104659977212
Offset: 0
Keywords
Examples
a(0) = 1: {}. a(1) = 2: {aa}, {ab}. a(2) = 7: {a,aaa}, {a,aab}, {a,aba}, {a,abc}, {aa,aa}, {aa,ab}, {ab,ab}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: a:= proc(n) option remember; `if`(n=0, 1, add(add(d* g(d+1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..30);
-
Mathematica
g[n_] := g[n] = If[n < 2, 1, g[n-1] + (n-1)*g[n-2]]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2023, after Alois P. Heinz *)