cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293809 Number of multisets of exactly n nonempty words with a total of 2n letters over 2n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.

Original entry on oeis.org

1, 2, 7, 22, 73, 240, 818, 2824, 10004, 36252, 134594, 512632, 2002797, 8037634, 33122211, 140287074, 610344666, 2728599114, 12524559427, 59014996342, 285169596358, 1412357461074, 7161541766341, 37150562120334, 196945057245451, 1066104659977212
Offset: 0

Views

Author

Alois P. Heinz, Oct 16 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 2: {aa}, {ab}.
a(2) = 7: {a,aaa}, {a,aab}, {a,aba}, {a,abc}, {aa,aa}, {aa,ab}, {ab,ab}.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          g(d+1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);
  • Mathematica
    g[n_] := g[n] = If[n < 2, 1, g[n-1] + (n-1)*g[n-2]];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2023, after Alois P. Heinz *)

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A000085(j+1).
Euler transform of j-> A000085(j+1).
a(n) = A293808(2n,n).