A293818 Number of integer-sided polygons having perimeter n, modulo rotations and reflections.
1, 1, 3, 5, 10, 16, 32, 54, 102, 180, 336, 607, 1144, 2098, 3960, 7397, 14022, 26452, 50404, 95821, 183322, 350554, 673044, 1292634, 2489502, 4797694, 9264396, 17904220, 34652962, 67125898, 130182972, 252679320, 490918440, 954505718, 1857413460, 3616951513, 7048412792, 13744169104
Offset: 3
Keywords
Examples
There are 10 polygons having perimeter 7: 2 triangles, 3 quadrilaterals, 3 pentagons, 1 hexagon and 1 heptagon.
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..200
- James East, Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
Programs
-
Mathematica
a[n_] := DivisorSum[n, EulerPhi[n/#]*2^# &]/(2*n) + 2^Floor[(n - 3)/2] - If[Mod[n, 4] < 2, 3*2^Floor[(n - 4)/4], 2^Floor[(n + 2)/4] ]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
-
PARI
a(n)={sumdiv(n, d, eulerphi(n/d)*2^d)/(2*n) + 2^floor((n-3)/2) - if(n%4<2, 3*2^floor((n-4)/4), 2^floor((n+2)/4))} \\ Andrew Howroyd, Nov 21 2017
Comments