A293821 Number of integer-sided quadrilaterals having perimeter n, modulo rotations but not reflections.
1, 1, 2, 4, 6, 10, 12, 20, 23, 35, 38, 56, 60, 84, 88, 120, 125, 165, 170, 220, 226, 286, 292, 364, 371, 455, 462, 560, 568, 680, 688, 816, 825, 969, 978, 1140, 1150, 1330, 1340, 1540, 1551, 1771, 1782, 2024, 2036, 2300, 2312, 2600, 2613, 2925, 2938, 3276, 3290, 3654, 3668, 4060
Offset: 4
Keywords
Examples
For example, there are 4 rotation-classes of perimeter-7 quadrilaterals: 3211, 3121, 3112, 2221. Note that 3211 and 3112 are reflections of each other, but these are not rotationally equivalent.
Links
- James East, Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
Programs
-
Mathematica
T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#] &]/n - Binomial[Floor[n/2], k - 1]; a[n_] := T[n, 4]; Table[a[n], {n, 4, 59}] (* Jean-François Alcover, Jan 29 2019, after Andrew Howroyd in A293819 *)
Formula
Conjectures from Colin Barker, Nov 01 2017: (Start)
G.f.: x^3*(1 - x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3*(1 + x^2)).
a(n) = (1/96)*(-3*(-1 + (-1)^n + 4*i*(-i)^n - 4*i*i^n) + (7 - 15*(-1)^n)*n + 3*(-1 + (-1)^n)*n^2 + 2*n^3) where i=sqrt(-1).
(End)
Comments