A293822 Number of integer-sided pentagons having perimeter n, modulo rotations but not reflections.
1, 1, 3, 6, 13, 21, 37, 51, 84, 108, 166, 203, 294, 350, 486, 566, 759, 867, 1133, 1276, 1631, 1815, 2275, 2509, 3094, 3386, 4116, 4473, 5372, 5804, 6896, 7412, 8721, 9333, 10887, 11606, 13433, 14269, 16401, 17367, 19836, 20944, 23782, 25047, 28290, 29726, 33410, 35030, 39195, 41015
Offset: 5
Keywords
Examples
For example, there are 6 rotation-classes of perimeter-8 pentagons: 32111, 31211, 31121, 31112, 22211, 22121. Note that 32111 and 31112 are reflections of each other, but these are not rotationally equivalent.
Links
- James East, Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#] &]/n - Binomial[Floor[n/2], k - 1]; a[n_] := T[n, 5]; Table[a[n], {n, 5, 60}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A293819 *)
Formula
G.f.: x^5*(1 + x - x^2 + 2*x^3 + 7*x^4 + 2*x^5 - 2*x^6 + x^8) / ((1 - x)^5*(1 + x)^4*(1 + x + x^2 + x^3 + x^4)) (conjectured). - Colin Barker, Nov 01 2017
Comments