A293823 Number of integer-sided hexagons having perimeter n, modulo rotations but not reflections.
1, 1, 4, 10, 21, 41, 74, 126, 196, 314, 448, 672, 912, 1302, 1692, 2334, 2937, 3927, 4828, 6292, 7579, 9679, 11466, 14378, 16808, 20748, 23968, 29198, 33388, 40188, 45564, 54264, 61047, 72033, 80484, 94164, 104587, 121429, 134134, 154672, 170016, 194810, 213200, 242880, 264730, 300002
Offset: 6
Keywords
Examples
For example, there are 10 rotation-classes of perimeter-9 hexagons: 411111, 321111, 312111, 311211, 311121, 311112, 222111, 221211, 221121, 212121. Note that 321111 and 311112 are reflections of each other, but these are not rotationally equivalent.
Links
- James East, Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
Programs
-
Mathematica
T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#] &]/n - Binomial[Floor[n/2], k - 1]; a[n_] := T[n, 6]; Table[a[n], {n, 6, 51}] (* Jean-François Alcover, Jan 29 2019, after Andrew Howroyd in A293819 *)
Formula
G.f.: x^6*(1 + x + 5*x^3 + 10*x^4 + 7*x^5 + 3*x^6 + 6*x^7 + 4*x^8 + 2*x^9) / ((1 - x)^6*(1 + x)^5*(1 - x + x^2)*(1 + x + x^2)^2) (conjectured). - Colin Barker, Nov 01 2017
Comments