A293926 Triangle read by rows, T(n, k) = Pochhammer(n, k) * Stirling2(2*n, k + n) for n >= 0 and 0 <= k <= n.
1, 1, 1, 7, 12, 6, 90, 195, 180, 60, 1701, 4200, 5320, 3360, 840, 42525, 114135, 176400, 157500, 75600, 15120, 1323652, 3764376, 6679134, 7484400, 5155920, 1995840, 332640, 49329280, 146386240, 287567280, 379387008, 332972640, 186666480, 60540480, 8648640
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 1 [2] 7, 12, 6 [3] 90, 195, 180, 60 [4] 1701, 4200, 5320, 3360, 840 [5] 42525, 114135, 176400, 157500, 75600, 15120 [6] 1323652, 3764376, 6679134, 7484400, 5155920, 1995840, 332640
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Maple
A293926 := (n, k) -> A293617(n, n, k ): seq(seq(A293926(n, k), k=0..n), n=0..7);
-
Mathematica
A293617[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m]; A293926Row[n_] := Table[A293617[n, n, k], {k, 0, n}]; Table[A293926Row[n], {n, 0, 7}] // Flatten
-
PARI
for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, ((n+k-1)!/(n-1)!)*stirling(2*n, n + k, 2)), ", "))) \\ G. C. Greubel, Nov 19 2017
Formula
T(n, k) = A293617(n, n, k).