A293944 Triangle read by rows related to Catalan triangle A009766.
1, 1, 1, 2, 3, 2, 5, 9, 9, 5, 14, 28, 34, 28, 14, 42, 90, 123, 123, 90, 42, 132, 297, 440, 497, 440, 297, 132, 429, 1001, 1573, 1935, 1935, 1573, 1001, 429, 1430, 3432, 5642, 7397, 8068, 7397, 5642, 3432, 1430, 4862, 11934, 20332, 28014, 32636, 32636, 28014, 20332, 11934
Offset: 0
Examples
Triangle begins: 1, 1,1, 2,3,2, 5,9,9,5, 14,28,34,28,14, 42,90,123,123,90,42, 132,297,440,497,440,297,132, ...
Links
- Laurent Méhats, Lutz Straßburger, Non-crossing Tree Realizations of Ordered Degree Sequences, Pages 211-227 in Logical Aspects of Computational Linguistics. Celebrating 20 Years of LACL (1996-2016), 9th International Conference, LACL 2016, Nancy, France, December 5-7, 2016, Proceedings, Lecture Notes in Computer Science book series (LNCS, volume 10054). See Eq. (7).
Crossrefs
Programs
-
Maple
A000108 := proc(q) if q <0 then 0; else binomial(2*q,q)/(1+q) ; end if; end proc: R := proc(q,s) option remember; local a,j,l ; if q= 0 then A000108(s) ; elif s = 0 then A000108(q) ; else a := 0 ; for j from 0 to q do for l from 0 to s do if j+l-1 >= 0 then a := a+A000108(j+l-1) *procname(q-j,s-l) ; end if; end do: end do: end if; end proc: A293944 := proc(n,k) R(n-k,k) ; end proc: seq(seq(A293944(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Nov 02 2017
-
Mathematica
R[q_, s_] := R[q, s] = Module[{a, j, l}, If[q == 0, CatalanNumber[s], If[s == 0, CatalanNumber[q], a = 0; For[j = 0, j <= q, j++, For[l = 0, l <= s , l++, If[j + l - 1 >= 0, a = a + CatalanNumber[j + l - 1] R[q - j, s - l]] ]]]] /. Null -> a]; T [n_, k_] := R[n - k, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 07 2020, after R. J. Mathar *)
Extensions
More terms from R. J. Mathar, Nov 02 2017