A293965 Number of sets of exactly three nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 8, 30, 114, 411, 1462, 5237, 18998, 70220, 265010, 1024692, 4059100, 16504058, 68843340, 294854550, 1295771712, 5843980456, 27026394156, 128135282356, 622230803212, 3093321051636, 15728089431744, 81739630155456, 433801710925696, 2349410730317456
Offset: 5
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..803
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i))), x, 4) end: a:= n-> coeff(b(n$2), x, 3): seq(a(n), n=5..30);
Formula
a(n) = [x^n y^3] Product_{j>=1} (1+y*x^j)^A000085(j).