A293966 Number of sets of exactly four nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
4, 22, 116, 482, 1966, 7682, 29845, 115438, 449870, 1770788, 7073065, 28727652, 118907910, 502249944, 2167410896, 9563204836, 43166853057, 199391604156, 942578850020, 4559743209208, 22566589645408, 114215149597312, 590875202641724, 3122678708581528
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..805
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i))), x, 5) end: a:= n-> coeff(b(n$2), x, 4): seq(a(n), n=8..33);
Formula
a(n) = [x^n y^4] Product_{j>=1} (1+y*x^j)^A000085(j).