A293967 Number of sets of exactly five nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
6, 48, 274, 1338, 6035, 25874, 108002, 444458, 1818905, 7451418, 30693022, 127604480, 536876960, 2291507552, 9939572897, 43885543586, 197465168488, 906430558822, 4247727231198, 20333276583188, 99450038211268, 497066503157976, 2538584563166367
Offset: 11
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 11..807
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i))), x, 6) end: a:= n-> coeff(b(n$2), x, 5): seq(a(n), n=11..35);
Formula
a(n) = [x^n y^5] Product_{j>=1} (1+y*x^j)^A000085(j).