A293968 Number of sets of exactly six nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
4, 62, 417, 2414, 12190, 57686, 260349, 1143710, 4936266, 21117128, 90035798, 384416432, 1649398948, 7133455202, 31173583589, 137947781614, 619247938106, 2824375268432, 13105785174035, 61940904739132, 298438345898409, 1466892183248186, 7358885205363735
Offset: 14
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 14..810
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i))), x, 7) end: a:= n-> coeff(b(n$2), x, 6): seq(a(n), n=14..40);
Formula
a(n) = [x^n y^6] Product_{j>=1} (1+y*x^j)^A000085(j).