A293972 Number of sets of exactly ten nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
120, 2010, 21082, 169846, 1173098, 7286181, 41993502, 228997683, 1198101638, 6074435686, 30073235682, 146248264684, 701957684114, 3338454463793, 15784582285468, 74407037119692, 350575594435412, 1654700449779204, 7840223330719670, 37363522942015498
Offset: 29
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 29..823
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i))), x, 11) end: a:= n-> coeff(b(n$2), x, 10): seq(a(n), n=29..53);
Formula
a(n) = [x^n y^10] Product_{j>=1} (1+y*x^j)^A000085(j).