A361616
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(n+(k-1)*(j+1),n-j)/j!.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 15, 34, 1, 1, 5, 25, 103, 209, 1, 1, 6, 37, 214, 885, 1546, 1, 1, 7, 51, 373, 2293, 9051, 13327, 1, 1, 8, 67, 586, 4721, 29176, 106843, 130922, 1, 1, 9, 85, 859, 8481, 70981, 427189, 1425495, 1441729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 7, 15, 25, 37, 51, ...
1, 34, 103, 214, 373, 586, ...
1, 209, 885, 2293, 4721, 8481, ...
1, 1546 ,9051, 29176, 70981, 146046, ...
-
T(n,k) = n! * sum(j=0, n, binomial(n+(k-1)*(j+1), n-j)/j!);
A380491
a(n) = n! * Sum_{k=0..n} binomial(2*n-3,k)/(n-k)!.
Original entry on oeis.org
1, 0, 3, 34, 501, 9276, 207775, 5470158, 165625929, 5671386136, 216730118331, 9144481575450, 422249317829053, 21180324426577044, 1146880568461500951, 66677192513929212166, 4142571510546929867025, 273910161452560881843888, 19204878684852222745880179
Offset: 0
A380492
a(n) = n! * Sum_{k=0..n} binomial(2*n-2,k)/(n-k)!.
Original entry on oeis.org
1, 1, 7, 73, 1045, 19081, 424051, 11109337, 335262313, 11453449105, 436944953791, 18412283563081, 849345673881277, 42570185481576793, 2303643608370636715, 133859418832759525081, 8312945340897388101841, 549460711493172343519777, 38513032385247860120975863
Offset: 0
A380493
a(n) = n! * Sum_{k=0..n} binomial(2*n+3,k)/(n-k)!.
Original entry on oeis.org
1, 6, 57, 748, 12585, 259026, 6315001, 178134552, 5711078673, 205209960670, 8171229107481, 357235056697476, 17014791129640057, 877089297426429738, 48657292133825026905, 2890717184573264397616, 183125115830192864360481, 12323226433255671469949622
Offset: 0
Showing 1-4 of 4 results.