A294004 Number of multisets of exactly two nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 18, 56, 168, 543, 1792, 6187, 22088, 81766, 313224, 1239764, 5068320, 21355894, 92714368, 413918310, 1899260064, 8941942444, 43168351136, 213385362136, 1079240048256, 5578228510556, 29443746273792, 158547033453372, 870370433845888, 4866859876496872
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..801
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 3) end: a:= n-> coeff(b(n$2), x, 2): seq(a(n), n=2..30);
Formula
a(n) = [x^n y^2] Product_{j>=1} 1/(1-y*x^j)^A000085(j).