A294005 Number of multisets of exactly three nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 22, 68, 218, 721, 2438, 8491, 30478, 112524, 428382, 1678600, 6778708, 28169286, 120516092, 530081370, 2396797920, 11125584584, 52993063796, 258676491628, 1293160049244, 6612750833996, 34564483264256, 184470133103464, 1004514566402816
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..802
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 4) end: a:= n-> coeff(b(n$2), x, 3): seq(a(n), n=3..30);
Formula
a(n) = [x^n y^3] Product_{j>=1} 1/(1-y*x^j)^A000085(j).