A294007 Number of multisets of exactly five nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 22, 73, 240, 811, 2792, 9857, 35644, 132119, 502832, 1964131, 7885792, 32523695, 137915764, 600865387, 2690302074, 12367812720, 58364059306, 282421855885, 1400551909446, 7109841300492, 36919536804334, 195890584265442, 1061185175436116
Offset: 5
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..804
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 6) end: a:= n-> coeff(b(n$2), x, 5): seq(a(n), n=5..35);
Formula
a(n) = [x^n y^5] Product_{j>=1} 1/(1-y*x^j)^A000085(j).