A294008 Number of multisets of exactly six nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 22, 73, 240, 818, 2816, 9967, 36080, 133875, 509676, 1990984, 7990628, 32936173, 139548808, 607402437, 2716780286, 12476624346, 58818236078, 284350933608, 1408898449946, 7146679566822, 37085526689402, 196654885016221, 1064783059174600
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..805
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 7) end: a:= n-> coeff(b(n$2), x, 6): seq(a(n), n=6..35);
Formula
a(n) = [x^n y^6] Product_{j>=1} 1/(1-y*x^j)^A000085(j).