A294009 Number of multisets of exactly seven nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 22, 73, 240, 818, 2824, 9995, 36210, 134397, 511802, 1999360, 8023808, 33066865, 140066840, 609466485, 2725084766, 12510393090, 58957378290, 284932585092, 1411369884766, 7157365741706, 37132616218394, 196866561660145, 1065754768886044
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..806
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 8) end: a:= n-> coeff(b(n$2), x, 7): seq(a(n), n=7..40);
Formula
a(n) = [x^n y^7] Product_{j>=1} 1/(1-y*x^j)^A000085(j).