A294010 Number of multisets of exactly eight nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 22, 73, 240, 818, 2824, 10004, 36242, 134547, 512410, 2001856, 8033716, 33106372, 140223388, 610090236, 2727581018, 12520472740, 58998480846, 285102284159, 1412080134386, 7160384929556, 37145667315382, 196924018956010, 1066012662681880
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..807
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 9) end: a:= n-> coeff(b(n$2), x, 8): seq(a(n), n=8..40);
Formula
a(n) = [x^n y^8] Product_{j>=1} 1/(1-y*x^j)^A000085(j).