A294011 Number of multisets of exactly nine nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 22, 73, 240, 818, 2824, 10004, 36252, 134583, 512580, 2002550, 8036582, 33117812, 140269222, 610272640, 2728310488, 12523401416, 59010337316, 285150731417, 1412280452528, 7161224109072, 37149235934192, 196939443174176, 1066080526789082
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..808
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 10) end: a:= n-> coeff(b(n$2), x, 9): seq(a(n), n=9..40);
Formula
a(n) = [x^n y^9] Product_{j>=1} 1/(1-y*x^j)^A000085(j).