A294012 Number of multisets of exactly ten nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 22, 73, 240, 818, 2824, 10004, 36252, 134594, 512620, 2002740, 8037362, 33121048, 140282194, 610324801, 2728518748, 12524236605, 59013698416, 285164364993, 1412336246688, 7161455061084, 37150204129624, 196943561689961, 1066098326520738
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..809
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 11) end: a:= n-> coeff(b(n$2), x, 10): seq(a(n), n=10..40);
Formula
a(n) = [x^n y^10] Product_{j>=1} 1/(1-y*x^j)^A000085(j).