cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294016 a(n) = sum of all divisors of all positive integers <= n, minus the sum of remainders of n mod k, for k = 1, 2, 3, ..., n.

Original entry on oeis.org

1, 4, 7, 14, 17, 30, 33, 48, 57, 74, 77, 110, 113, 134, 153, 184, 187, 230, 233, 278, 301, 330, 333, 406, 419, 452, 479, 536, 539, 624, 627, 690, 721, 762, 789, 900, 903, 948, 983, 1084, 1087, 1196, 1199, 1280, 1347, 1400, 1403, 1556, 1573, 1660, 1703, 1796, 1799, 1932, 1967, 2096, 2143, 2208, 2211, 2428, 2431, 2500
Offset: 1

Views

Author

Omar E. Pol, Oct 22 2017

Keywords

Comments

a(n) is also the area (also the number of cells) of the n-th polygon formed by the Dyck path described in A237593 and its mirror, as shown below in the example.
a(n) is also the volume (and the number of cubes) in the n-th level (starting from the top) of the pyramid described in A294017.

Examples

			Illustration of initial terms:
.
.   _ 1
.  |_|_ _ 4
.    |   |
.    |_ _|_ _   7
.        |   |_
.        |_    |
.          |_ _|_ _ _  14
.              |     |_
.              |       |
.              |_      |
.                |_ _ _|_ _ _
.                      |     |  17
.                      |     |_ _
.                      |_ _      |
.                          |     |
.                          |_ _ _|_ _ _ _
.                                |       |_  30
.                                |         |_
.                                |           |
.                                |_          |
.                                  |_        |
.                                    |_ _ _ _|_ _ _ _
.                                            |       |
.                                            |       |_  33
.                                            |         |_ _
.                                            |_ _          |
.                                                |_        |
.                                                  |       |
.                                                  |_ _ _ _|
.
		

Crossrefs

Programs

  • Maple
    A294016 := proc(n)
        A024916(n)-A004125(n) ;
    end proc:
    seq(A294016(n),n=1..80) ; # R. J. Mathar, Nov 07 2017
  • Mathematica
    Accumulate[Table[2*(DivisorSigma[1, n] - n) + 1, {n, 1, 100}]] (* Amiram Eldar, Mar 30 2024 *)
  • Python
    from math import isqrt
    def A294016(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))-n**2 # Chai Wah Wu, Oct 22 2023

Formula

a(n) = A024916(n) - A004125(n).
a(n) = A000290(n) - A067436(n).
From Omar E. Pol, Nov 05 2017: (Start)
a(n) = A000203(n) + A024816(n) + A153485(n) - A004125(n).
a(n) = A000217(n) + A153485(n) - A004125(n).
a(n) = A000203(n) + A153485(n) + A244048(n). (End)
a(n) = (Pi^2/6 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, Mar 30 2024