cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294018 Number of strict trees whose leaves are the parts of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 3, 1, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 0, 1, 4, 1, 1, 1, 3, 1, 6, 1, 1, 1, 1, 1, 4, 1, 1, 0, 1, 1, 8, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 4, 1, 1, 6, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 13
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2018

Keywords

Comments

By convention a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(84) = 8 strict trees: (((42)1)1), (((41)2)1), ((4(21))1), ((421)1), (((41)1)2), ((41)(21)), ((41)21), (4(21)1).
		

Crossrefs

Programs

  • Mathematica
    nn=120;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    qci[y_]:=qci[y]=If[Length[y]===1,1,Sum[Times@@qci/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,UnsameQ@@Total/@#]&]}]];
    qci/@ptns

Formula

A273873(n) = Sum_{i=1..A000041(n)} a(A215366(n,i)).