cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294019 Number of same-trees whose leaves are the parts of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 3, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 8
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2018

Keywords

Comments

By convention a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(108) = 8 same-trees: ((22)(2(11))), ((22)((11)2)), ((2(11))(22)), (((11)2)(22)), (222(11)), (22(11)2), (2(11)22), ((11)222).
From _Antti Karttunen_, Sep 22 2018: (Start)
For 12 = prime(1)^2 * prime(2)^1, we have the following two cases: 2(11) and (11)2, thus a(12) = 2.
For 36 = prime(1)^2 * prime(2)^2, we have the following cases: (11)22, 2(11)2, 22(11), thus a(36) = 3.
For 144  = prime(1)^4 * prime(2)^2, we have the following 14 cases: (1111)(22), (22)(1111); ((11)(11))(22), (22)((11)(11)); (11)(11)22, (11)2(11)2, (11)22(11), 2(11)2(11), 2(11)(11)2, 22(11)(11); ((11)2)(11(2)), ((11)2)(2(11)), (2(11))((11)2), (2(11))(2(11)), thus a(144) = 14.
For n = 8775 = 3^3 * 5^2 * 13^1 = prime(2)^3 * prime(3)^2 * prime(6)^1, we have the following six cases: (222)(33)6, (222)6(33), (33)(222)6, (33)6(222), 6(222)(33), 6(33)(222), thus a(8775) = 6.
(End)
		

Crossrefs

Programs

  • Mathematica
    nn=120;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    qci[y_]:=qci[y]=If[Length[y]===1,1,Sum[Times@@qci/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,SameQ@@Total/@#]&]}]];
    qci/@ptns
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    productifbalancedfactorization(v) = if(!#v, 1, my(pw=A056239(v[1]), m=1); for(i=1,#v,if(A056239(v[i])!=pw,return(0), m *= A294019(v[i]))); (m));
    A294019aux(n, m, facs) = if(1==n, productifbalancedfactorization(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A294019aux(n/d, m, newfacs))); (s));
    A294019(n) = if(1==n,0,if(isprime(n),1,A294019aux(n, n-1, List([]))));
    \\ A memoized implementation:
    map294019 = Map();
    A294019(n) = if(1==n,0,if(isprime(n),1,if(mapisdefined(map294019,n), mapget(map294019,n), my(v=A294019aux(n, n-1, List([]))); mapput(map294019,n,v); (v)))); \\ Antti Karttunen, Sep 22 2018

Formula

A281145(n) = Sum_{i=1..A000041(n)} a(A215366(n,i)).
a(p^n) = A006241(n) for any prime p and exponent n >= 1. - Antti Karttunen, Sep 22 2018