A294032 Triangle read by rows, T(n, k) = Pochhammer(3, k)*Stirling2(3 + n, 3 + k) for n >= 0 and 0 <= k <= n.
1, 6, 3, 25, 30, 12, 90, 195, 180, 60, 301, 1050, 1680, 1260, 360, 966, 5103, 12600, 15960, 10080, 2520, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
Offset: 0
Examples
Triangle starts: [0] 1 [1] 6, 3 [2] 25, 30, 12 [3] 90, 195, 180, 60 [4] 301, 1050, 1680, 1260, 360 [5] 966, 5103, 12600, 15960, 10080, 2520 [6] 3025, 23310, 83412, 158760, 166320, 90720, 20160 [7] 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Maple
A294032 := (n, k) -> pochhammer(3, k)*Stirling2(n + 3, k + 3): seq(seq(A294032(n, k), k=0..n), n=0..7); T := (n, k) -> A293617(3, n, k): seq(seq(T(n, k), k=0..n), n=0..7);
-
Mathematica
Table[Pochhammer[3, k] StirlingS2[3 + n, 3 + k], {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 22 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1((k+2)!*stirling(n+3,k+3,2)/2, ", "))) \\ G. C. Greubel, Nov 19 2017
Formula
E.g.f.: (1/2)*exp(x)*(2*y + 9*exp(2*x) + y^2+1-11*exp(3*x)*y + 15*y^2*exp(2*x) - 7*y^2*exp(x) - 13*y^2*exp(3*x) + 4*exp(4*x)*y^2 - 8*exp(x) + 24*y*exp(2*x) - 15*y*exp(x))/(1 - y*(exp(x) - 1))^3.
T(n, k) = A293617(3, n, k).