cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294032 Triangle read by rows, T(n, k) = Pochhammer(3, k)*Stirling2(3 + n, 3 + k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 6, 3, 25, 30, 12, 90, 195, 180, 60, 301, 1050, 1680, 1260, 360, 966, 5103, 12600, 15960, 10080, 2520, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
Offset: 0

Views

Author

Peter Luschny, Oct 22 2017

Keywords

Examples

			Triangle starts:
[0]    1
[1]    6,      3
[2]   25,     30,     12
[3]   90,    195,    180,      60
[4]  301,   1050,   1680,    1260,     360
[5]  966,   5103,  12600,   15960,   10080,    2520
[6] 3025,  23310,  83412,  158760,  166320,   90720,  20160
[7] 9330, 102315, 510300, 1369620, 2116800, 1890000, 907200, 181440
		

Crossrefs

T(n, 0) = A000392(n+3), T(n, n) = A001710(n+2).
Row sums A002051(n+3), alternating row sums A000225(n+1).
Cf. A028246 (m=1), A053440 (m=2), this seq. (m=3), A293617 (hub).

Programs

  • Maple
    A294032 := (n, k) -> pochhammer(3, k)*Stirling2(n + 3, k + 3):
    seq(seq(A294032(n, k), k=0..n), n=0..7);
    T := (n, k) -> A293617(3, n, k): seq(seq(T(n, k), k=0..n), n=0..7);
  • Mathematica
    Table[Pochhammer[3, k] StirlingS2[3 + n, 3 + k], {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 22 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1((k+2)!*stirling(n+3,k+3,2)/2, ", "))) \\ G. C. Greubel, Nov 19 2017

Formula

E.g.f.: (1/2)*exp(x)*(2*y + 9*exp(2*x) + y^2+1-11*exp(3*x)*y + 15*y^2*exp(2*x) - 7*y^2*exp(x) - 13*y^2*exp(3*x) + 4*exp(4*x)*y^2 - 8*exp(x) + 24*y*exp(2*x) - 15*y*exp(x))/(1 - y*(exp(x) - 1))^3.
T(n, k) = A293617(3, n, k).