A294036 a(n) = 4^n*hypergeom([-n/4, (1-n)/4, (2-n)/4, (3-n)/4], [1, 1, 1], 1).
1, 4, 16, 64, 280, 1504, 9856, 70144, 498136, 3449440, 23506816, 160566784, 1115048896, 7905796864, 56994288640, 414928113664, 3034880623576, 22255957312864, 163667338903936, 1208070406612480, 8955840250934080, 66678657938510080
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
T := (m,n,x) -> m^n*hypergeom([seq((k-n)/m, k=0..m-1)], [seq(1, k=0..m-2)], x): lprint(seq(simplify(T(4,n,1)), n=0..39));
-
Mathematica
Table[4^n * HypergeometricPFQ[{-n/4, (1-n)/4, (2-n)/4, (3-n)/4}, {1, 1, 1}, 1], {n, 0, 30}] (* Vaclav Kotesovec, Nov 02 2017 *)
Formula
Let H(m, n, x) = m^n*hypergeom([(k-n)/m for k=0..m-1], [1 for k=0..m-2], x) then a(n) = H(4, n, 1).
a(n) ~ 2^(3*n + 2) / (Pi*n)^(3/2). - Vaclav Kotesovec, Nov 02 2017
Comments