cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294042 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp((1+x)^k - 1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 20, 1, 0, 1, 5, 28, 87, 76, 1, 0, 1, 6, 45, 232, 585, 312, 1, 0, 1, 7, 66, 485, 2248, 4383, 1384, 1, 0, 1, 8, 91, 876, 6145, 24544, 35919, 6512, 1, 0, 1, 9, 120, 1435, 13716, 88245, 295456, 318195, 32400, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2017

Keywords

Examples

			Square array A(n,k) begins:
   1, 1,   1,    1,     1,     1, ...
   0, 1,   2,    3,     4,     5, ...
   0, 1,   6,   15,    28,    45, ...
   0, 1,  20,   87,   232,   485, ...
   0, 1,  76,  585,  2248,  6145, ...
   0, 1, 312, 4383, 24544, 88245, ...
		

Crossrefs

Columns k=0..5 give A000007, A000012, A000898, A192989, A202824, A202825.
Rows n=0..2 give A000012, A001477, A000384.
Main diagonal gives A294045.

Formula

A(0,k) = 1 and A(n,k) = k * (n-1)! * Sum_{j=1..min(k,n)} binomial(k-1,j-1) * A(n-j,k)/(n-j)! for n > 0.
A(n,k) = Sum_{j=0..n} k^j * Stirling1(n,j) * Bell(j). - Seiichi Manyama, Jan 31 2024

A294191 a(n) = n! * [x^n] exp(n*((1+x)^n - 1)).

Original entry on oeis.org

1, 1, 20, 1233, 152416, 31391225, 9694519776, 4190408587645, 2414572869757952, 1788571346467193361, 1655904985345402048000, 1873608841984994237091881, 2543757905332880336197324800, 4081324788082969930056684134953, 7639334000918272184846041849942016
Offset: 0

Views

Author

Seiichi Manyama, Oct 24 2017

Keywords

Crossrefs

Main diagonal of A294118.
Cf. A294045.

A294043 a(n) = n! * [x^n] exp((1+x)^(n+1) - 1).

Original entry on oeis.org

1, 2, 15, 232, 6145, 244296, 13474699, 978650240, 90103113153, 10217823306400, 1395459930700231, 225409459306111488, 42430679373064255585, 9192944371302603777152, 2268432208238438936707875, 631780778416973851617427456, 197044925922469402512476724481
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2017

Keywords

Crossrefs

A diagonal of A294042.

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[E^((1+x)^(n+1) - 1),{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 30 2025 *)

A369754 a(n) = n! * [x^n] exp(1 - (1+x)^n).

Original entry on oeis.org

1, -1, 2, 21, -104, -8245, -124344, 7728581, 757142912, 21142327671, -3194024271200, -589138966169611, -38768504982354432, 4948651031184677219, 2022468386748039472256, 303711906641250589741125, -7986432746850744238505984, -19535207301291993249120303121
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2024

Keywords

Crossrefs

Main diagonal of A369738.

Formula

a(n) = Sum_{k=0..n} n^k * Stirling1(n,k) * A000587(k).
Showing 1-4 of 4 results.