A294072 Number of noncube divisors of n^3.
0, 2, 2, 4, 2, 12, 2, 6, 4, 12, 2, 22, 2, 12, 12, 8, 2, 22, 2, 22, 12, 12, 2, 32, 4, 12, 6, 22, 2, 56, 2, 10, 12, 12, 12, 40, 2, 12, 12, 32, 2, 56, 2, 22, 22, 12, 2, 42, 4, 22, 12, 22, 2, 32, 12, 32, 12, 12, 2, 100, 2, 12, 22, 12, 12, 56, 2, 22, 12, 56, 2, 58, 2, 12, 22, 22, 12, 56, 2, 42, 8, 12, 2, 100, 12
Offset: 1
Keywords
Examples
a(4) = 4 because 4^3 = 64 has 7 divisors {1, 2, 4, 8, 16, 32, 64} among which 4 divisors {2, 4, 16, 32} are noncubes.
Links
Programs
-
Maple
f:= proc(n) local F; F:= map(t -> t[2],ifactors(n)[2]); mul(1+3*t,t=F) - mul(1+t,t=F) end proc: map(f, [$1..100]; # Robert Israel, Jan 16 2020
-
Mathematica
nmax = 85; Rest[CoefficientList[Series[Sum[(3^PrimeNu[k] - 1) x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] a[n_] := Length[Select[Divisors[n], ! IntegerQ[#^(1/3)] &]]; Table[a[n^3], {n, 1, 85}] Table[DivisorSigma[0, n^3] - DivisorSigma[0, n], {n, 1, 85}]
Comments