cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294076 Absolute difference between n-th stella octangula number (A007588) and the nearest perfect power (A001597).

Original entry on oeis.org

1, 0, 2, 2, 1, 2, 15, 3, 8, 5, 35, 50, 37, 25, 2, 11, 16, 8, 18, 10, 104, 5, 42, 25, 68, 104, 157, 35, 195, 92, 146, 15, 32, 17, 174, 134, 251, 145, 145, 263, 204, 160, 91, 230, 245, 124, 145, 337, 236, 24, 50, 26, 264, 415, 153, 234, 473, 552, 459, 182, 291
Offset: 0

Views

Author

Felix Fröhlich, Feb 07 2018

Keywords

Comments

There are only two square stella octangula numbers, namely those corresponding to n = 1 and n = 169, so a(1) = 0 and a(169) = 0 (cf. Wikipedia link).

Crossrefs

Programs

  • Mathematica
    f[n_, i_: 1] := Block[{k = n, j = If[i == 1, 1, -1]}, While[Nor[k == 1, GCD @@ FactorInteger[k][[All, 2]] > 1], k = k + j]; k]; {1}~Join~Array[Min@ Abs@ {# - f[#], f[#, 0] - #} &[# (2 #^2 - 1)] &, 60] (* Michael De Vlieger, Feb 21 2018 *)
  • PARI
    a007588(n) = n*(2*n^2-1)
    is_a001597(n) = ispower(n) || n==1
    nearestpower(n) = my(x=0); while(1, if(x < n, if(is_a001597(n-x), return(n-x), if(is_a001597(n+x), return(n+x))), if(is_a001597(n+x), return(n+x))); x++)
    a(n) = abs(a007588(n)-nearestpower(a007588(n)))