A294080 Same-tree Moebius function of the multiorder of integer partitions indexed by Heinz numbers.
0, 1, 1, -1, 1, 0, 1, -1, -1, 0, 1, 2, 1, 0, 0, -2, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, -1, 0, 0, 0, 3, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, -3, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, -1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, -2, 0, 1, -4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 8
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
nn=120; ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}]; tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns]; rmu[y_]:=rmu[y]=If[Length[y]===1,1,-Sum[Times@@rmu/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,SameQ@@Total/@#]&]}]]; rmu/@ptns
-
PARI
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); } muifbalancedfactorization(v) = if(!#v, 1, my(pw=A056239(v[1]), m=-1); for(i=1,#v,if(A056239(v[i])!=pw,return(0), m *= A294080(v[i]))); (m)); A294080aux(n, m, facs) = if(1==n, muifbalancedfactorization(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A294080aux(n/d, m, newfacs))); (s)); A294080(n) = if(1==n,0,if(isprime(n),1,A294080aux(n, n-1, List([])))); \\ A memoized implementation: map294080 = Map(); A294080(n) = if(1==n,0,if(isprime(n),1,if(mapisdefined(map294080,n), mapget(map294080,n), my(v=A294080aux(n, n-1, List([]))); mapput(map294080,n,v); (v)))); \\ Antti Karttunen, Sep 22 2018
Comments