A294081 Number of partitions of n into three squares and two nonnegative 7th powers.
1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 4, 4, 3, 3, 3, 2, 2, 3, 5, 5, 4, 3, 3, 2, 2, 3, 5, 6, 4, 4, 3, 3, 2, 3, 5, 5, 5, 4, 5, 3, 3, 4, 5, 5, 3, 4, 4, 3, 2, 3, 6, 7, 6, 5, 6, 5, 4, 3, 4, 5, 3, 4, 4, 4, 3, 4, 7, 7, 6, 5, 5, 3, 3, 4, 7, 7, 6, 5, 4, 3, 2, 5, 7, 8, 5, 5, 6
Offset: 0
Keywords
Examples
7 = 0^2 + 1^2 + 2^2 + 1^7 + 1^7 = 1^2 + 1^1 + 2^2 + 0^7 + 1^7, a(7) = 2. 10 = 0^2 + 0^2 + 3^2 + 0^7 + 1^7 = 0^2 + 1^1 + 3^2 + 0^7 + 0^7 = 0^2 + 2^2 + 2^2 + 1^7 + 1^7 = 1^2 + 2^1 + 2^2 + 0^7 + 1^7, a(10) = 4.
Links
- Wikipedia, Legendre's three-square theorem
- Wikipedia, Lagrange's four-square theorem
Programs
-
Mathematica
a[n_]:=Sum[If[x^2+y^2+z^2+u^7+v^7==n, 1, 0], {x,0,n^(1/2)}, {y,x,(n-x^2)^(1/2)}, {z,y,(n-x^2-y^2)^(1/2)}, {u,0,(n-x^2-y^2-z^2)^(1/7)}, {v,u,(n-x^2-y^2-z^2-u^7)^(1/7)}] Table[a[n], {n,0,86}]
Comments