cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294085 a(n) is the number of self-symmetric anonymous and neutral equivalence classes of preference profiles with 3 alternatives and n agents (IANC model).

Original entry on oeis.org

1, 1, 3, 4, 8, 10, 17, 20, 30, 35, 49, 56, 75, 84, 108, 120, 150, 165, 202, 220, 264, 286, 338, 364, 425, 455, 525, 560, 640, 680, 771, 816, 918, 969, 1083, 1140, 1267, 1330, 1470, 1540, 1694, 1771, 1940, 2024, 2208, 2300, 2500, 2600, 2817, 2925, 3159, 3276, 3528, 3654, 3925
Offset: 0

Views

Author

Alexander Karpov, Apr 12 2018

Keywords

Crossrefs

For odd n, it is A000292.

Programs

  • PARI
    Vec((1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, May 11 2018

Formula

a(n) = 2*A005513(n-6) - A037240(n).
If n is odd, a(n) = (n+5)*(n+3)*(n+1)/48;
If n is even, a(n) = ceiling((n+4)^2*(n+2)/48).
From Colin Barker, May 11 2018: (Start)
G.f.: (1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11) for n>10.
(End)