A294090 Base-10 complementary numbers: n equals the product of the 10's complement of its digits.
5, 18, 35, 50, 180, 315, 350, 500, 1800, 3150, 3500, 5000, 18000, 31500, 35000, 50000, 180000, 315000, 350000, 500000, 1800000, 3150000, 3500000, 5000000, 18000000, 31500000, 35000000, 50000000, 180000000, 315000000, 350000000, 500000000, 1800000000
Offset: 1
Examples
5 = (10-5), therefore 5 is in the sequence. 18 = (10-1)*(10-8), therefore 18 is in the sequence. 35 = (10-3)*(10-5), therefore 35 is in the sequence. 315 = (10-3)*(10-1)*(10-5), therefore 315 is in the sequence. If x is in the sequence, then 10*x = concat(x,0) = x*(10-0) is in the sequence.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- G. Villemin, Nombres complémentés (in French).
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,10).
Programs
-
Mathematica
LinearRecurrence[{0,0,0,10},{5,18,35,50,180,315},40] (* Harvey P. Dale, Mar 02 2024 *)
-
PARI
is(n,b=10)={n==prod(i=1,#n=digits(n,b),b-n[i])}
-
PARI
a(n)=if(n>6,a((n-3)%4+3)*10^((n-3)\4),[5,18,35,50,180,315][n])
-
PARI
Vec(x*(5 + 18*x + 35*x^2 + 50*x^3 + 130*x^4 + 135*x^5) / (1 - 10*x^4) + O(x^60)) \\ Colin Barker, Feb 09 2018
Formula
a(n+4) = 10 a(n) for all n >= 3.
G.f.: x*(5 + 18*x + 35*x^2 + 50*x^3 + 130*x^4 + 135*x^5) / (1 - 10*x^4). - Colin Barker, Feb 09 2018
Comments