A295835 Numbers k == 3 (mod 4) such that 2^((k-1)/2), 3^((k-1)/2) and 5^((k-1)/2) are congruent to 1 (mod k).
71, 191, 239, 311, 359, 431, 479, 599, 719, 839, 911, 1031, 1151, 1319, 1439, 1511, 1559, 1871, 2039, 2111, 2351, 2399, 2591, 2711, 2879, 2999, 3119, 3191, 3359, 3671, 3719, 3911, 4079, 4271, 4391, 4679, 4751, 4799, 4871, 4919, 5039, 5231, 5279, 5351, 5399, 5471
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv:1608.00862 [math.GM], 2016.
Programs
-
Maple
filter:= proc(n) [2&^((n-1)/2),3&^((n-1)/2), 5&^((n-1)/2)] mod n = [1,1,1] end proc: select(filter, [seq(i,i=3..10000,4)]); # Robert Israel, Nov 28 2017, corrected Feb 26 2018
-
Mathematica
fQ[n_] := PowerMod[{2, 3, 5}, (n - 1)/2, n] == {1, 1, 1}; Select[3 + 4Range@ 1500, fQ] (* Michael De Vlieger, Nov 28 2017 and slightly modified by Robert G. Wilson v, Feb 26 2018 based on the renaming *)
-
PARI
is(n) = n%4==3 && Mod(2, n)^(n\2)==1 && Mod(3, n)^(n\2)==1 && Mod(5, n)^(n\2)==1 && Mod(2, n)^logint(n+1,2)!=1 \\ Charles R Greathouse IV, Nov 28 2017
Extensions
Definition corrected by Jonas Kaiser, Feb 05 2018
Comments