cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294117 a(n) = (n!)^2 * Sum_{k=1..n} binomial(n,k) / k^2.

Original entry on oeis.org

1, 9, 139, 3460, 129076, 6831216, 492314544, 46810296576, 5724123883776, 881047053849600, 167511790501401600, 38685942660873830400, 10689310289146278297600, 3485920800452969462169600, 1325434521073620201431040000, 581241452210335678204477440000
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2017

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,9,139,3460]; [n le 4 select I[n] else  (5*n^2- 7*n+3)*Self(n-1)-(n-1)^2*(9*n^2-24*n+17)*Self(n-2)+(n-2)^3*(n-1)^2*(7*n-13)*Self(n-3)-2*(n-3)^3*(n-2)^3*(n-1)^2*Self(n-4): n in [1..16]]; // Vincenzo Librandi, Oct 24 2017
  • Maple
    f:= gfun:-rectoproc({a(n) = (5*n^2 - 7*n + 3)*a(n-1) - (n-1)^2*(9*n^2 - 24*n + 17)*a(n-2) + (n-2)^3*(n-1)^2*(7*n - 13)*a(n-3) - 2*(n-3)^3*(n-2)^3*(n-1)^2*a(n-4),a(1)=1,a(2)=9,a(3)=139,a(4)=3460},a(n),remember):
    map(f, [$1..20]); # Robert Israel, Oct 23 2017
  • Mathematica
    Table[n!^2*Sum[Binomial[n, k]/k^2, {k, 1, n}], {n, 1, 20}]
    Table[n!^2*n*HypergeometricPFQ[{1, 1, 1, 1 - n}, {2, 2, 2}, -1], {n, 1, 20}]

Formula

a(n) = (5*n^2 - 7*n + 3)*a(n-1) - (n-1)^2*(9*n^2 - 24*n + 17)*a(n-2) + (n-2)^3*(n-1)^2*(7*n - 13)*a(n-3) - 2*(n-3)^3*(n-2)^3*(n-1)^2*a(n-4).
a(n) ~ (n!)^2 * 2^(n+2) / n^2.