A294119 Expansion of e.g.f.: exp(2*((1+x)^2 - 1)).
1, 4, 20, 112, 688, 4544, 31936, 236800, 1841408, 14943232, 126063616, 1101983744, 9954734080, 92714156032, 888502796288, 8746003922944, 88294183469056, 912920984944640, 9655688415674368, 104353064578711552, 1151244577906098176, 12953223477921316864
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..655
Crossrefs
Column k=2 of A294118.
Programs
-
Maple
f:= rectoproc({a(n)=4*a(n-1)+4*(n-1)*a(n-2),a(0)=1,a(1)=4},a(n),remember): map(f, [$0..30]); # Robert Israel, Jun 16 2020
-
Mathematica
nmax = 20; CoefficientList[Series[E^(2*((1+x)^2 - 1)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 23 2017 *)
-
PARI
N=66; x='x+O('x^N); Vec(serlaplace(exp(2*((1+x)^2-1))))
Formula
E.g.f.: exp(2*((1+x)^2 - 1)).
a(n) ~ 2^(n - 1/2) * n^(n/2) * exp(-1 + 2*sqrt(n) - n/2). - Vaclav Kotesovec, Oct 23 2017
a(n) = 4*a(n-1)+4*(n-1)*a(n-2). - Robert Israel, Jun 16 2020