A294138 Number of compositions (ordered partitions) of n into proper divisors of n.
1, 0, 1, 1, 5, 1, 24, 1, 55, 19, 128, 1, 1627, 1, 741, 449, 5271, 1, 45315, 1, 83343, 3320, 29966, 1, 5105721, 571, 200389, 26425, 5469758, 1, 154004510, 1, 47350055, 226019, 9262156, 51885, 15140335649, 1, 63346597, 2044894, 14700095925, 1, 185493291000, 1, 35539518745, 478164162
Offset: 0
Keywords
Examples
a(4) = 5 because 4 has 3 divisors {1, 2, 4} among which 2 are proper divisors {1, 2} therefore we have [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
Links
Programs
-
Mathematica
Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[d[[k]] != n] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 45}]
Formula
a(n) = [x^n] 1/(1 - Sum_{d|n, d < n} x^d).
a(n) = A100346(n) - 1.