A294152 Chromatic invariant of the n-antiprism graph.
0, 2, 11, 38, 112, 309, 828, 2190, 5759, 15106, 39580, 103657, 271416, 710618, 1860467, 4870814, 12752008, 33385245, 87403764, 228826086, 599074535, 1568397562, 4106118196, 10749957073, 28143753072, 73681302194, 192900153563, 505019158550, 1322157322144
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Antiprism Graph
- Eric Weisstein's World of Mathematics, Chromatic Invariant
- Index entries for linear recurrences with constant coefficients, signature (5, -8, 5, -1).
Crossrefs
Cf. A005248 (lucasl(2*n)).
Programs
-
Mathematica
Table[LucasL[2 n] - 2 n - 1, {n, 3, 20}] LinearRecurrence[{5, -8, 5, -1}, {0, 2, 11, 38}, 20] CoefficientList[Series[(x (2 + x - x^2))/((-1 + x)^2 (1 - 3 x + x^2)), {x, 0, 20}], x]
-
PARI
concat(0, Vec(x^2*(2 + x - x^2)/((-1 + x)^2*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Nov 16 2017
Formula
a(n) = A005248(n) - 2*n - 1.
a(n) = phi^(2*n) + phi^(-2*n) - 2*n - 1.
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4).
G.f.: x^2*(2 + x - x^2)/((-1 + x)^2*(1 - 3*x + x^2)).
a(n) = -1 + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n - 2*n. - Colin Barker, Nov 16 2017
Comments