cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294152 Chromatic invariant of the n-antiprism graph.

Original entry on oeis.org

0, 2, 11, 38, 112, 309, 828, 2190, 5759, 15106, 39580, 103657, 271416, 710618, 1860467, 4870814, 12752008, 33385245, 87403764, 228826086, 599074535, 1568397562, 4106118196, 10749957073, 28143753072, 73681302194, 192900153563, 505019158550, 1322157322144
Offset: 1

Views

Author

Eric W. Weisstein, Nov 16 2017

Keywords

Comments

Extended to a(1)-a(2) using the formula/recurrence.

Crossrefs

Cf. A005248 (lucasl(2*n)).

Programs

  • Mathematica
    Table[LucasL[2 n] - 2 n - 1, {n, 3, 20}]
    LinearRecurrence[{5, -8, 5, -1}, {0, 2, 11, 38}, 20]
    CoefficientList[Series[(x (2 + x - x^2))/((-1 + x)^2 (1 - 3 x + x^2)), {x, 0, 20}], x]
  • PARI
    concat(0, Vec(x^2*(2 + x - x^2)/((-1 + x)^2*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Nov 16 2017

Formula

a(n) = A005248(n) - 2*n - 1.
a(n) = phi^(2*n) + phi^(-2*n) - 2*n - 1.
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4).
G.f.: x^2*(2 + x - x^2)/((-1 + x)^2*(1 - 3*x + x^2)).
a(n) = -1 + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n - 2*n. - Colin Barker, Nov 16 2017