A294153 Numbers k = a * b, such that k' = a' * b' where k', a' and b' are the arithmetic derivatives of k, a and b.
0, 1, 256, 512, 1152, 1728, 1920, 3072, 3456, 7776, 11664, 12800, 12960, 20736, 23328, 52488, 72000, 78732, 81920, 86400, 87480, 100352, 110208, 124800, 139968, 153216, 157464, 200000, 219520, 263424, 294912, 321024, 336000, 354294, 400000, 486000, 486720, 531441
Offset: 1
Keywords
Examples
a(0) = 0 because 0 = 0 * b and 0' = 0' * b' = 0; a(1) = 1 because 1 = 1 * 1 and 1' = 1' * 1' = 0; a(2) = 256 because 256 = 16 * 16 and 256' = 16' * 16' = 32 * 32 = 1024; a(3) = 512 because 512 = 8 * 64 and 512' = 8' * 64' = 12 * 192 = 2304.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,j,k,n,p; for n from 1 to q do j:=sort([op(divisors(n))]); for k from 2 to trunc((nops(j)+1)/2) do a:=j[k]*add(op(2,p)/op(1,p), p=ifactors(j[k])[2]); b:=(n/j[k])*add(op(2,p)/op(1,p), p=ifactors(n/j[k])[2]); c:=n*add(op(2,p)/op(1,p), p=ifactors(n)[2]); if c=a*b then print(n); break; fi; od; od; end: P(10^6);
Comments