cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294155 Numbers m such that there are precisely 14 groups of order m.

Original entry on oeis.org

16, 36, 40, 104, 232, 296, 351, 424, 488, 808, 872, 1125, 1192, 1197, 1256, 1384, 1448, 1576, 1755, 1832, 2152, 2216, 2223, 2331, 2344, 2536, 2625, 2792, 2984, 3112, 3176, 3368, 3688, 3861, 4072, 4328, 4329, 4456, 4599, 4875, 4904, 5115, 5187, 5224, 5288, 5301
Offset: 1

Views

Author

Muniru A Asiru, Oct 24 2017

Keywords

Examples

			For m = 16, the 14 groups of order 16 are C16, C4 x C4, (C4 x C2) : C2, C4 : C4, C8 x C2, C8 : C2, D16, QD16, Q16, C4 x C2 x C2, C2 x D8, C2 x Q8, (C4 x C2) : C2, C2 x C2 x C2 x C2  and for n = 36 the 14 groups of order 36 are C9 : C4, C36, (C2 x C2) : C9, D36, C18 x C2, C3 x (C3 : C4), (C3 x C3) : C4, C12 x C3, (C3 x C3) : C4, S3 x S3, C3 x A4, C6 x S3, C2 x ((C3 x C3) : C2), C6 x C6 where C, D, Q  mean Cyclic group, Dihedral group, Quaternion group of the stated order and S is the Symmetric group of the stated degree. The symbols x and : mean direct and semi-direct products respectively.
		

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), this sequence (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • GAP
    A294155 := Filtered([1..2015], n -> NumberSmallGroups(n) = 14);