cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294158 Row sums of A291844.

Original entry on oeis.org

1, 1, 6, 52, 602, 8223, 128917, 2273716, 44509914, 957408649, 22449011336, 570032756328, 15587503694363, 456793916757139, 14284890417759141, 474896318288651220, 16726743380843538668, 622282429409944248297, 24385251974172090147514, 1004017088910699487855180
Offset: 0

Views

Author

Gheorghe Coserea, Oct 24 2017

Keywords

Crossrefs

Cf. A049464(y), A287039(x), A286799(z), A287029(u), A291844.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1;); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1,t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    Vec(A291844_ser(20,t=1))

Formula

a(n) = Sum_{k=0..floor((2*n-1)/3)} A291844(n,k), n > 0.