cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294159 Alternating row sums of triangle A291844.

Original entry on oeis.org

1, 1, 2, 6, 18, 55, 171, 538, 1708, 5461, 17560, 56728, 183973, 598597, 1953145, 6388376, 20939664, 68764283, 226192964, 745146462, 2458020664, 8118111977, 26841209903, 88835163150, 294284206183, 975699571009, 3237456793478, 10749922312752, 35718863630895, 118757413662397
Offset: 0

Views

Author

Gheorghe Coserea, Nov 03 2017

Keywords

Crossrefs

Cf. A291844.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1; ); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1, t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    Vec(A291844_ser(30,-1))
    \\ test: y=A291844_ser(200,-1); 0==(x^3 + x^2 + 3*x - 1)*(y^2 - y) + x

Formula

G.f. y(x) satisfies: 0 = (x^3 + x^2 + 3*x - 1)*(y^2 - y) + x.
Conjecture: D-finite with recurrence n*a(n) +(-3*n+1)*a(n-1) +2*(-n+3)*a(n-2) +2*(n-5)*a(n-3) +(n-4)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Jun 17 2020