A294159 Alternating row sums of triangle A291844.
1, 1, 2, 6, 18, 55, 171, 538, 1708, 5461, 17560, 56728, 183973, 598597, 1953145, 6388376, 20939664, 68764283, 226192964, 745146462, 2458020664, 8118111977, 26841209903, 88835163150, 294284206183, 975699571009, 3237456793478, 10749922312752, 35718863630895, 118757413662397
Offset: 0
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..303
Crossrefs
Cf. A291844.
Programs
-
PARI
A291843_ser(N, t='t) = { my(x='x+O('x^N), y=1, y1=0, n=1, dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1)); while (n++, y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) + (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn; if (y1 == y, break); y = y1; ); y; }; A291844_ser(N, t='t) = { my(z = A291843_ser(N+1, t)); ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2); }; Vec(A291844_ser(30,-1)) \\ test: y=A291844_ser(200,-1); 0==(x^3 + x^2 + 3*x - 1)*(y^2 - y) + x
Formula
G.f. y(x) satisfies: 0 = (x^3 + x^2 + 3*x - 1)*(y^2 - y) + x.
Conjecture: D-finite with recurrence n*a(n) +(-3*n+1)*a(n-1) +2*(-n+3)*a(n-2) +2*(n-5)*a(n-3) +(n-4)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Jun 17 2020